Problem 2

How many solutions to the PDE $u_{t}=u_{x x}$ can you find? Try solutions of the form $u(x, t)=e^{a x+b t}$.

Solution

There are an infinite number of solutions to this PDE. For example, there are polynomial solutions,

$$
u(x, t)=2 t+x^{2} \quad u(x, t)=4 t+2 x^{2} \quad u(x, t)=6 t+3 x^{2}
$$

and there are exponential solutions of the form $u(x, t)=e^{a x+b t}$. Plug it into the PDE to determine a condition involving a and b.

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(e^{a x+b t}\right) & =\frac{\partial^{2}}{\partial x^{2}}\left(e^{a x+b t}\right) \\
b e^{a x+b t} & =a^{2} e^{a x+b t}
\end{aligned}
$$

Divide both sides by $e^{a x+b t}$.

$$
b=a^{2}
$$

Therefore, $u(x, t)=e^{a x+a^{2} t}$ is a solution of $u_{t}=u_{x x}$.

